A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications.
نویسندگان
چکیده
Soft robotic actuators offer many advantages over their rigid counterparts, but they often are unable to apply highly localized point loads. In contrast, many invertebrates have not only evolved extremely strong "hybrid appendages" that are composed of rigid ends that can grasp, puncture, and anchor into solid substrates, but they also are compliant and resilient, owing to the functionally graded architecture that integrates rigid termini with their flexible and highly extensible soft musculatures. Inspired by the design principles of these natural hybrid appendages, we demonstrate a synthetic hybrid end effector for soft-bodied robots that exhibits excellent piercing abilities. Through the incorporation of functionally graded interfaces, this design strategy minimizes stress concentrations at the junctions adjoining the fully rigid and soft components and optimizes the bending stiffness to effectively penetrate objects without interfacial failure under shear and compressive loading regimes. In this composite architecture, the radially aligned tooth-like elements apply balanced loads to maximize puncturing ability, resulting in the coordinated fracture of an object of interest.
منابع مشابه
Application of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کاملWorkspace Boundary Avoidance in Robot Teaching by Demonstration Using Fuzzy Impedance Control
The present paper investigates an intuitive way of robot path planning, called robot teaching by demonstration. In this method, an operator holds the robot end-effector and moves it through a number of positions and orientations in order to teach it a desired task. The presented control architecture applies impedance control in such a way that the end-effector follows the operator’s hand with d...
متن کاملMagnetic Stability of Functionally Graded Soft Ferromagnetic Porous Rectangular Plate
This study presents critical buckling of functionally graded soft ferromagnetic porous (FGFP) rectangular plates, under magnetic field with simply supported boundary condition. Equilibrium and stability equations of a porous rectangular plate in transverse magnetic field are derived. The geometrical nonlinearities are considered in the Love-Kirchhoff hypothesis sense. The formulations are compa...
متن کاملA 3D-printed, functionally graded soft robot powered by combustion
Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, as compared to traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We emp...
متن کاملSOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.
Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft robotics
دوره 4 4 شماره
صفحات -
تاریخ انتشار 2017